威尼斯国际平台app:爱因斯坦时间观遭挑战,物
分类:科学技术

原标题:未来已成定局?爱因斯坦时间观遭挑战

爱因斯坦曾经说过:“这个世界最不可理解的就是它竟然是可以理解的。” 至少要感谢他,我们对宇宙有了更深层次的理解。而在现代物理学的两大基石——量子力学和广义相对论——的背后有着六个基本原理,是我们每个人都应该知道的。

我们能够感觉到时间在不停地流逝,但在爱因斯坦等物理学家看来,时间只是我们的感官所引起的错觉,过去、现在和未来并没有什么不同,早已被书写在四维的块宇宙之中。来自开普敦大学的宇宙学家埃利斯却向这种观点发起了挑战,他结合广义相对论与量子力学,构建了更符合我们直觉的时间观。

- 原理 1 -

乔治·埃利斯(George Ellis)并不害怕对抗权威。作为开普敦大学的宇宙学家,埃利斯把自己的目光放到了更为抽象的事物上:时间本身的流逝。

光速不变原理

阿尔伯特·爱因斯坦(Albert Einstein)在20世纪早期首次提出,传统理论认为的时间流逝只是一种错觉。过去和未来之间并没什么不同,都早已成定局。然而对于埃利斯来说,这种主流理论的哲学含义并不和我们的直觉相违背;他认为传统的想法很危险,因为他们剥夺了我们的自由意志与道德责任。埃利斯的科学目标是把时间带回物理学领域,让宇宙可以创造自己的未来,并赋予我们改变命运的能力。

回到1860年代,麦克斯韦在前人的基础上统一了电学和磁学。电磁理论最伟大的一个成果就是预言了电磁波的存在,并证明了电磁波在真空中的传播速率与真空中的光速 c 相同,从而揭示了光的电磁本性。而且,他也得出了一个结论:“光相对于任一惯性系的速度都为c。” 也就是说光速是不变的。这很奇怪。根据我们的经验,如果有一个人在移动的车上发射了一枚子弹,对于一个站在路边的旁观者来说,子弹的传播速度是它发射出的速度加上车的速度。

威尼斯国际平台app 1

威尼斯国际平台app 2

乔治·埃利斯认为爱因斯坦走得太远了——未来还未定。

△ 上图:警察A发射的子弹以100mph的速度射中强盗,而警察B发射的子弹则以100-50=50mph的速度射中强盗。下图:无论是警察A或B,都将以光速c射中强盗。(图片来源: M. Rulison)

块宇宙假说

但是,20多年后,美国物理学家迈克尔逊和莫雷在寻找传播光的介质——以太,他们的实验出乎意料的得出了一个结论:光速是一个常数!不仅如此,光速还是宇宙的速度极限。无论是物质、信息、引力或其它力都无法超越光速。爱因斯坦认为光速不变是自然法则,这也成为了他构建两个相对论的起点。

17世纪时,在牛顿的《数学原理》里,这位英国的物理学家构建了一套符合我们日常经验的时间观。他描绘了一块宇宙中通用的秒表,它的滴嗒声让整个宇宙的时间在每一秒、每一分钟、每一小时里均匀地流逝。在牛顿的观念里,不论你的位置和运动状态,你都会同意埃利斯在剑桥大学三一学院的长凳上花了十分钟喝完了咖啡。而每隔15分钟,他都能听见三一学院华美钟塔的铃声,这座钟塔早在年轻的牛顿第一次踏进校园的半个世纪前就矗立在这里,精准地记录着时间的流逝。

狭义相对论:

1905年,爱因斯坦推翻了牛顿的宇宙存在绝对时间的和谐图景。取而代之的是不协调的、相对的时间观,该观点认为不同的人对同一事件的持续时间可能有不同的感知,甚至不同事物的发生顺序也不一致。年轻的爱因斯坦意识到,时间事实上是我们所观察到的三维空间之外的第四维度,也在此基础上创造了被称为“块宇宙”(block universe)的现实图景。

爱因斯坦发现,光速不变原理有一些奇怪的结果。想象一下你坐在两架相互靠近的宇宙飞船中的其中一架,它们分别以90%的光速运动。从你的角度看,另一架的速度是多少?我们不用去管确切数字是多少,但肯定不会大于光速。1905年,爱因斯坦发表了狭义相对论,空间和时间会弯曲来满足光速不变。例如,运动中的时钟走的比较慢,也就是说你在一架飞船中会老的更慢。同时,运动中的尺子也会显得更加的短。日常生活中的速度,这些效应都是可以忽略的,但是一旦速度接近光速,它们就变得非常显著。

埃利斯认为,为了解释块宇宙是怎么一回事,你可以想象对一个地点进行连续拍照,比如剑桥的学生们带着书本去参加考试,忧心忡忡地走过三一学院的场景。如果你将拍摄的照片一张接一张地顺序播放,你可以将其制成一部电影,时间在其中自然地流逝,这与我们对时间流逝的感知一致。但如果你将照片全部堆叠在一起,学生们穿过院子的过程将一次性完整地展现在你眼前。第二种情况就与块宇宙的观点类似,过去、现在和未来是同时存在的,时间流逝一说并无意义;所有事件都是相互并存的。

威尼斯国际平台app 3

当然,一组照片只能展示沿着时间拍摄到的空间的两个维度。将其扩展到整个宇宙的三维空间,还要包含宇宙全部的历史以及未来会发生的所有事,这样就能得到爱因斯坦理论下完整的块宇宙,就像一份静止的记录,包含了所有曾经发生和将要发生的所有事件。

△ 运动中的时钟走的更慢。(图片来源: M. Rulison)

埃利斯强调,块宇宙与播放一段连续时刻的电影不同,块宇宙因为其中没有一个明确的时间点可以用来标明“现在”,不同的个体对哪个时刻属于“现在”的认知并不一致,不存在一个独一无二的标记来区分已经固定的过去和开放的未来。就像两个学生坐在院子里的不同角落,从他们各自的角度看到的三一学院的钟塔的影子长度不相等,对于时间来说也是一样:爱因斯坦意识到在块宇宙中时间也只是另一个维度,那在时空中不同位置的观察者对于同一个事件的持续时间可能有不同的意见。也许有人会准确指出埃利斯花在喝咖啡上的时间不只10分钟。

E=mc²:

不仅如此。在爱因斯坦的块宇宙中,不同的观察者看到的事件的发生顺序也可能不同,就像院子里不同位置的学生对于埃利斯是在钟塔的左侧还是右侧会有不同的看法。一个人觉得埃利斯在钟塔敲响下午2点的钟声之后才喝完咖啡,而另一个人觉得喝完咖啡的时间在2点之前。这些差异完全取决于观察者在块宇宙中运动的速度和方向,因为这会影响这些事件发出的光到达观察者所需要的时间。以人类所能达到的速度来说,这种差异小到难以察觉,但已经被在国际空间站和高速飞机上所做的实验证实。

著名的方程E=mc²就是源自于狭义相对论,用光速把能量和质量联系了起来。因此,在欧洲大型强子对撞机中,可以通过将两束质子在高能下对撞产生许多大质量的粒子。

那么在块宇宙中,**对一些人来说是未来的事在另一些人看来其实是过去,这要取决于观察者的位置和运动状态**。未发生的事件对另一些人来说已经发生。未来对于你来说可能是未知数,但却早已成定局。爱因斯坦自己是这样描述的:“对我们这样相信物理的人来说,过去、现在和未来之间的差别只是一种顽固而持久的错觉。”

- 原理 2 -

大多数物理学家已经学会接受爱因斯坦的宇宙观点以及宇宙的基本方程,确定所谓时间的“前进”方向是任意的,但埃利斯的直觉认为还有更深的次层需要研究。他说:“我回到这里尝试研究对事物真实的感受”。

等效原理

威尼斯国际平台app 4

16世纪时,伽利略意识到在没有空气阻力时,从比萨斜塔扔下两个质量不同的物体(比如一根羽毛和一个铁球),将以同样速率落下并同时落地。在阿波罗15号登月任务中,宇航员David

对于思考时间的流动来说,没有什么比剑桥大学数百年历史的三一学院更好的去处了,虽然爱因斯坦认为未来与过去一样真实,埃利斯依然认为未来只是可能性的集合,直到它融入现在这个时间点。

Scott在没有空气的月亮上确认了该原理。牛顿认为,这之所以会发生必须满足一个奇怪的巧合:惯性质量

引力质量。为什么会这样?对于这一重要的事实的思考,爱因斯坦提出了等效原理:在空间的一个足够小的区域,一个观察者感知到的引力场的物理效应和另一个在没有引力场区域以匀加速运动的观测者所感知的物理效应相同。爱因斯坦认为这是他一生中最快乐的思想。

威尼斯国际平台app 5

△ 爱因斯坦宣称没有任何物理测量能区别在左图(加速中的火箭)和右图(在地球上)中红色小球的运动。换句话说,加速度可以“欺骗”你,让你觉得是在引力场中。(图片来源: Wikimedia Commons user Markus Poessel)

广义相对论:

爱因斯坦将狭义相对论和等效原理结合,发展了全新的引力理论——广义相对论。用惠勒的话总结:“时空告诉物质如何移动;物质告诉时空如何弯曲。” 广义相对论为我们理解宇宙在大尺度范围如何工作提供了框架。

威尼斯国际平台app 6

△ 弯曲时空的概念直接源于等价原理。(图片来源: Graham Templeton)

- 原理 3 -

宇宙学原理

在伽利略时代之前,哥白尼认为地球在宇宙中并不是一个特殊的地方。一个世纪之后,牛顿在他的《原理》一书中假设太阳系被嵌入在一个均匀的空间之中,该空间在所有方向无限延伸。这些是宇宙学原理的起源。现代宇宙学原理认为,无论你朝宇宙中的任何地方或任何方向观测,宇宙看起来都是一样的,没有任何地方是特殊的。虽然在局部区域,我们会看到物质以太阳系、星系和星系团的形式存在,但在一个足够大的范围下,就会发现宇宙是均匀与各项同性的。在建立宇宙学模型的过程中,这一原理使所需要的数学大量的简化。但宇宙学原理的有效性受限于我们的视野。例如,2013年天文学家发现宇宙一个由星系组成的巨大超结构,延伸超过100亿光年,称为武仙-北冕座长城,使宇宙学原理受到挑战。

威尼斯国际平台app 7

△ 宇宙学原理认为无论朝宇宙的哪个方向看,我们都会看到同样的物质分布。。(图片来源: M. Rulison)

标准宇宙学模型:

当爱因斯坦第一次利用广义相对论建立宇宙学模型时,他认为宇宙是静态的:即不膨胀也不收缩。但是,在1920年代,对遥远星系观测发现它们“红移”了,意味着遥远的星系在不断地远离我们。其他科学家运用广义相对论加上宇宙学原理,构建了一个膨胀中的宇宙。这些是现代标准宇宙学模型的开始。它描述了我们的宇宙起源于138亿年前,从一个炽热、致密以及无限小的一个点膨胀至今天我们观测到的宇宙。这个理论也包含了一些我们现在仍然难以解释的惊喜。

威尼斯国际平台app 8

△ 根据天文观测和标准宇宙学模型绘制了宇宙的演化时间线。(图片来源:WMAP Science Team)

- 原理 4 -

量子化

1900年,普朗克试图用数学更好的描述从灯泡辐射出来的能量。当时的理论跟实际观测不符。在几次失败的尝试后,普朗克发现他能够消除该隔阂,但是他不得不作出一个大胆的假设:一个物体辐射出的电磁能并不是连续的,而是以一份份能量包的形式。普朗克一开始认为这些“量子”是理论的局限,而不是对现实的描述。但是到了1905年,爱因斯坦在研究光照射金属会驱逐电子后提出了光电效应,认为光是由离散的粒子组成的,称为光子。但这仅仅只是开始。随着量子理论的发展,我们发现不仅能量是一份份的,许多其它的性质,比如电荷和自旋,都有一个最小的单位。为什么必须是这样,没有人知道。

威尼斯国际平台app 9

△ 普朗克提出电磁辐射的能量是被量子化的,而不是连续的。(图片来源:C24)

- 原理 5 -

不确定性原理

如果你踢一个足球,你可以同时知道它在哪里以及它要去哪里。但是,在亚原子粒子世界,情况就不这么简单了。你对一个粒子的位置知道的越精确,你对它的动量知道的就越少,反之亦然。这就是量子不确定性原理,在1920年代中期由海森堡提出。它不仅连接了位置和动量,也连接了能量和时间,以及其它。不确定性并不是来自于测量装置的精确性,而是根本的限制了我们对这个世界能够有多少理解。正是因为不确定性原理,粒子才有机会“隧穿”在经典物理中不可能克服的能量障碍,使发生在太阳的核聚变成为了可能。它也允许粒子能够在看起来空无一物的真空中短暂的出现。

威尼斯国际平台app 10

△ 我们永远无法同时知道粒子的位置和速度。(图片来源:Chad Orzel)

- 原理 6 -

波粒二象性

在20世纪初,当物理学家发现光其实是由光子组成的时候,使人们非常困惑。因为在这之前,光也表现出所有波所具有的性质,比如干涉和衍射。在1924年,德布罗意提出,这个行为是普遍的,而且是双向工作的:像波的光可以表现粒子的行为,而电子和其它的物质粒子也可以表现出波的行为。在这个波粒二象性的图景中,一个量子物体同时处于所有可能的位置或状态,称为“叠加态”,只有在进行测量后才会坍缩为其中的一个状态。薛定谔对此构想了一个思想实验:一只猫同时处于生和死的状态。量子叠加态的魔法也是未来建造量子计算机的关键。

威尼斯国际平台app 11

△ 光可以同时表现的像波和粒子。(图片来源:S.Tanzilli, CNRS)

量子力学:

广义相对论支配着整个宇宙在大尺度下是如何运作的,而微观尺度下则由量子力学所掌管。量子力学正是起源于对量子化、不确定性原理和波粒二象性的理解,它完美地描述了亚原子粒子的运作方式,尽管这背后的原理带来了许多反直觉的概念。正如广义相对论一样,量子力学也仅仅是一个框架。在它可以用来描述真实的粒子之前,它必须结合狭义相对论,因为这些粒子通常都以接近光的速度在运动。

量子纠缠:

量子力学有一个非常令人困惑的性质,那就是量子纠缠。爱因斯坦在1935年和另外两位物理学家提出了一个思想实验。简单的说就是,两个相互关联的粒子会一直保持这种关联,无论它们相距多远。只要知道了其中一个粒子的状态,就会立即知道另一个粒子的状态。爱因斯坦把这称为“鬼魅般的超距作用”,坚持认为有某种看不见的力量在影响着这种纠缠状态。因此量子力学必须是不完备的。过去,有许多实验都表明量子纠缠的确存在,爱因斯坦或许错了。

量子场论:

狭义相对论告诉我们,质量和能量是等价的。量子力学告诉我们粒子可以在任何地方出现。而量子场论则将这两个理论联姻在一起,描述了所有的粒子其实都是由场“激发”出来的。英国物理学家狄拉克在1928年写下了相对论性的量子力学方程——狄拉克方程,描述了相对论电子的行为。他的方程预言了一种跟电子完全一样的粒子,除了拥有相反的电荷。在理论提出的不久后,科学家在宇宙射线中发现了第一个反粒子——正电子。

粒子物理学的标准模型:

威尼斯国际平台app 12

△ 粒子物理学的标准模型。(图片来源:CERN)

经历了几十年的努力,物理学家发展出了粒子物理学的标准模型,描述了自然界中的三种基本力和基本粒子。在过去的几十年,标准模型漂亮的通过了所有的实验检验。它描述了携带基本力的玻色子和构成物质的费米子之间的相互作用,而两个量子场论则是它的核心。量子电动力学(QED)描述了光与物质间的相互作用,并和弱核力被统一成单一的电弱力。量子色动力学(QCD)则是描述强核力的一个理论。标准模型的巅峰来自2012年,当希格斯玻色子的发现填补了标准模型的最后一块拼图。

基于这六个基本原理,物理学家发展了标准宇宙学模型和粒子物理学的标准模型,它们各自都成功地经受住了无数次的检验,但同时我们也面临着六个亟待解决的问题。

文/大大 原理(principia1687)

喜欢这类内容?也愿意再阅读其内容…?那么敬请关注【博科园】今后我们会努力为你呈现更多科学知识。

流失的时间

虽然埃利斯对于块宇宙里的时间观保留意见,他依然钦佩爱因斯坦,而且在1960年搬到剑桥攻读世界著名的宇宙学家丹尼斯·夏玛(Dennis Sciama)的博士学位时,这种敬意更深了。在担任研究人员的开始几年,埃利斯赢得了世界级宇宙学家的声誉,因为他解决了爱因斯坦时空方程中一些棘手的数学难题。

埃利斯钦敬爱因斯坦的数学独创性,但是块体宇宙理论从哲学意义来说,认为未来和过去都是注定,这一点埃利斯表示怀疑。

在剑桥,埃利斯很快就与年轻的斯蒂芬·霍金(Stephen Hawking)一起工作,他们同在夏玛的门下。霍金因为投身于研究宇宙起源以及黑洞本质而声名大噪,但是埃利斯并没有这般待遇。1973年,33岁的埃利斯离开了剑桥大学,并结束了与霍金密切的合作研究,回到南非的开普敦大学数学系建立了自己的团队。

到了他学术生涯的晚期,埃利斯在2005年时将他的注意力转移到了困扰他学生时代的基础物理学难题:在没有时间的现实观念中,要如何解决其中个人主体缺失的问题。为此,他重新审视了爱因斯坦的块宇宙观,着眼于开发一种保持最佳特性的新模型,这个模型既包含了实验已经验证的时间相对性,也同时也恢复了另一个观点:本质上现在与过去和未来是区分开来的

埃利斯的新模型并不是要颠覆块宇宙理论,而更像是对其的改进。他从2006年起发表了一系列备受关注的论文,在其理论框架中,埃利斯保留了四维时空,而且符合相对论的预测。然而,他认为爱因斯坦把这个观点推的太远,没有必要假设第四个维度已经延伸至无穷远处。因此埃利斯的模型与爱因斯坦的关键区别在于:未来的边界并不包含所有将要发生的事

本文由威尼斯网址开户网站发布于科学技术,转载请注明出处:威尼斯国际平台app:爱因斯坦时间观遭挑战,物

上一篇:3D生物打印机要上国际空间站 下一篇:院士姚期智,清华大学交叉信息研究院简介
猜你喜欢
热门排行
精彩图文