威尼斯国际平台app:做到了这一步,宇宙中最冷
分类:科学技术

我写过不少关于量子计算的文章,实际上主要是两类:一类是基于量子门的计算,另一类是绝热量子计算。其实还有第三种,叫做“量子行走”。所谓量子行走,用自然界的例子来说,就是光合作用过程中电子转移的工作原理。当前,研究者已经能够催动整块的原子云“齐步走”,实现量子行走。

改造未来的新材料

来源:arstechnica

最冷条件下的新状态

绝热量子计算则不涉及严谨运算,而是将问题转化为实现某一能量景观的最低能耗,打个比方,解决方案就在丘壑地区的深谷之中。思路是这样的:先从一片平滑的碗状地带入手,逐渐制造出“山陵”,直至量子位落入最深的“谷底”,计算结束。读出量子位的值,问题就解决了。

在冬季,南极洲的温度低至零下85℃;在月球的阴暗面,温度可达到零下173℃;自然界中已知最冷的物质是液氦,它的温度是零下269℃。

威尼斯国际平台app 1

实际上,利用这两种技术,地球上的实验室也可以产生超冷原子。但是在地面上,重力会作用于冷却的原子云,使它们迅速下落,原子云马上又热起来了。在这期间,科学家们能够观察玻色-爱因斯坦凝聚态原子云的时间只有几分之一秒。虽然磁场可以用来“捕获”原子云并使其保持静止,但是这样就观测不到凝聚态原子的自然运动行为了。因此,科学家们想在太空中生产冷原子,因为在太空的微重力下,冷原子云漂浮的时间要长得多,科学家们可以对凝聚态原子的行为有更深入的了解。

在玻色-爱因斯坦凝聚态下,光和物质扮演的角色可以互换。所谓玻色凝聚,指处在同一量子态的冷原子的集合。简而言之,该集合的行为就像单个粒子一样整齐划一。这时候如果用脉冲光对其加以轰击,这颗“粒子”将以一定频率震颤,导致漂移。至于漂移的方向,取决于玻色凝聚的内部状态。

如果一个粒子朝我们飞来,我们该如何让它停下来?答案自然是对着粒子运动的方向施加一个力,让它减速。类似地,激光中的光子具有一定的动量,方向为光传播的方向,如果光子和原子发生碰撞,也会产生一个力,让原子减速。由于原子的热运动是不规则的,我们不知道它具体的运动方向,因此,就需要用激光在各个方向上让原子减速,来降低它的温度。这就是激光冷却技术的原理。

校对:李莉

另外,冷原子实验还可以用来提高原子钟的精度。目前,我们对时间的定义是由铯原子所释放的光子频率决定的,如何确定这个频率就决定了时间的精确度。科学家们会让铯原子通过微波腔(微波腔可以发出特定频率的电磁波,并且研究人员可以调节电磁波的频率),当微波腔发出的频率和铯原子的光子频率相同时,就会产生共振,科学家们就可以确定铯原子的光子频率。然而,铯原子在常温下的平均速度约几百米每秒,通过微波腔的时间非常短,极大地限制了确定频率的稳定度。而太空中的冷原子运动速度被极大地降低了,通过微波腔的时间长了,精度自然也就提高了。原子钟的精度原先误差为1秒/300万年,冷原子钟的精度可以提高到1秒/3亿年,提高了2个数量级。

此时的思路是这样的:制造一套相互关联的线路,将有待解决的问题编入其中。如果说一个光子是一个量子位,那么光纤就是实现上述方案的材料。先使光纤相互耦合,确保量子位沿多条线路游走并自我干涉。耦合的强度决定了每一根光纤中光子的“数量”,而光纤的长度决定了干涉的性质是有益还是有害。

你能想到的最冷的地方在哪里?

威尼斯国际平台app 2

不过,科学家们为什么要在太空中造出比绝对零度高出几十亿分之一度、甚至几百亿分之一度的原子云呢?这还要从最有名的物理学家爱因斯坦说起。

像光一样流动的物质

通常,在我们的概念中,组成物质的粒子都是一个个单独的个体,它们都做着各自的不规则热运动,运动的大小和方向各不相同,这些粒子都处于不同的状态,也就是说,各个粒子是可以区分的。

研究者证实,只要依次施以微波和激光脉冲,就能像经验丰富的弹球玩家一样,随意控制玻色凝聚的空间线路。不同的是,这里是量子弹球——每当玻色凝聚撞到反弹杠,就会同时向多个方向反弹,再撞到更多的反弹杠。更复杂的是,量子弹球会穿越不同的线路,再在各类节点重新组合。线路交叉之处,玻色凝聚发生自我干涉。干涉会导致在某些线路上找到玻色凝聚的概率降低,而在另一些线路上的概率上升。量子计算恰好需要这个。

不过,一个能够送到太空中的冷原子实验室并不容易制作。通常,地球上的冷原子设备非常庞大,能占据一整间实验室,同时一些开关都暴露在外面,以便科学家们随时调整设备。首先,送往太空的最冷实验室体积要小;其次,科学家们只能在地球对它进行远程操作。实际上,科学家和工程师们在2012年就开始制作这个太空冷原子实验室了,但直到2018年,它才成功地被送到太空中。

威尼斯国际平台app 3

威尼斯国际平台app 4

把光变成固体

威尼斯国际平台app 5

据我所知,在量子行走中对问题进行编码,难度不小。必须设定好各个微波脉冲、分别对应不同行走线路,才能造出计算机。再以光纤为例。在光学量子行走中,如果光子同时进入左右两条线路,那么左边那条线路就会受制于右边那条线路的长度和耦合度。但是,在玻色凝聚中,不同线路之间相距无几,根本不能使微波脉冲对准具体任何一条。换句话说,微波源将不可避免地修改整个玻色凝聚的内部状态。

然而,早在1924年,一位印度的数学物理学家玻色在研究光子统计的时候,就提出了一个想法,微观粒子存在彼此不可区分的情况,在得出这个想法之后,玻色马上写了一篇相关的论文。不过,由于当时的玻色是一个连博士学位都没有的无名科学家,没有期刊愿意登出他的论文。于是,玻色一气之下,直接把论文寄给了爱因斯坦。爱因斯坦看到玻色的论文非常激动,亲自将玻色的论文翻译成德语,并发表在德国的杂志上。后来,爱因斯坦在玻色理论的基础上提出了玻色-爱因斯坦凝聚态的现象。人们为了纪念两人对这种新状态的预言,便称它为玻色-爱因斯坦凝聚态。

本文作者Chris Lee系荷兰方堤斯应用科学大学教师。

接下来,我们分别了解一下这两种技术。

进入正题之前,我想先对不同类型的量子计算机做一番简要的比较。量子门是大家最熟悉的,就是通过一个量子门的集合来完成严谨的逻辑运算,末端读出结果。

2018年5月21号,美国国家航空航天局将一个差不多抽屉大小的小型设备——冷原子实验室发往国际空间站(由16个国家共同参与管理),在发送成功后的7个月里,科学家们每天都通过远程操控的方式,生产着超冷原子,并观测着超冷原子的行为。该冷原子实验室由激光器、真空室和一把电磁“刀”组成,它利用了激光冷却和蒸发冷却两种技术。

本文由威尼斯网址开户网站发布于科学技术,转载请注明出处:威尼斯国际平台app:做到了这一步,宇宙中最冷

上一篇:基因魔剪,无专利冲突 下一篇:没有了
猜你喜欢
热门排行
精彩图文