南开大学在发表有机薄膜晶体管稳固性机理方面
分类:威尼斯网址开户网站

而在施加反向电压后,由于氢氧根离子发生逆向反应,被束缚的载流子又重获自由,在器件中正常流动。“晶体管有一个非常重要的功能,就是逻辑操作。原来晶体管是开着的,给它赋予的是1的状态,但过一段时间突然从1这个状态跳到0,这是我们所不希望的。” 仇志军指出:“(载流子)一会儿被锁住,一会儿又会被释放出来,没法控制,所以导致稳定性比较差。”

但令人遗憾的是,当时器件载流子迁移率极低,只有10﹣5 cm2/Vs,远低于非晶硅材料,从而导致器件工作速度慢而且极易在空气中退化。材料中的迁移率是用来表征载流子(电子或空穴)在半导体材料内运动速度的快慢,迁移率越高,器件的运行速度也就越快。

责任编辑:

物联网和智能物品的“最核心”技术——柔性有机薄膜晶体管(OTFT)

有机薄膜晶体管研究可追溯到上世纪80年代。由于有机薄膜晶体管有良好的柔韧性,并具备厚度小、能弯曲等常规硅基微电子器件不易具备的特点,相关研究旋即受到广泛关注。复旦大学信息科学与工程学院仇志军副教授与刘冉教授领导的研究小组,继将有机薄膜晶体管的工作速度提升至可实用的量级后,又揭示了影响有机薄膜晶体管性能稳定性的本质机理。

研究团队首先希望在器件运行速度上有所突破,达到可实用要求,并探索有机薄膜晶体管(OTFT)电学性能稳定性的本质机理。在实验过程中,他们发现如果对这些有机材料进行某种程度的修饰,比如,采用碳纳米管掺杂的有机半导体材料,就可显著改善OTFT的电学性能。经过五年多的不断尝试、试验,该科研团队已成功将有机薄膜迁移率从10﹣4 cm2/Vs提高到10 cm2/Vs左右,增加了四个数量级,接近多晶硅的水平,达到了可实用的量级。

目前有机薄膜晶体管的发展主要面临两大难题。“一个是迁移率的问题,有机薄膜晶体管导电能力差,因此应用起来就比较困难。另外一个问题在于可靠性,有机薄膜晶体管在应用时可能不稳定。”刘冉教授介绍道:“这些年在提高迁移率方面获得不少进展。近两年我们开始研究第二个问题。”

但是还有一个根本性问题始终困扰着该研究团队——如何提高OTFT的性能稳定性。在解决该问题之前必须先了解“影响有机薄膜晶体管稳定性的内在机理究竟是什么”?研究团队决定打破砂锅问到底。

1965年,英特尔创始人之一的戈登·摩尔(Gordon E. Moore)提出,集成电路上可容纳的晶体管数目约每两年便会增加一倍。半导体技术已经以符合这种“摩尔定律”的趋势发展了数十年。然而,根据国际半导体技术发展蓝图组织(ITRS)的评估,这种发展势头将会减慢。而另一方面,有机薄膜晶体管(OTFT)作为印制电子关键技术,则在几年间获得了长足进展。

未来可以预见,世界上任何一个物体从轮胎到牙刷、从房屋到纸巾,都可以通过物联网进行信息交换。在那时,射频识别技术、传感器技术、纳米技术、智能嵌入技术等将得到更加广泛的应用。

这种描述水氧电化学反应和有机薄膜载流子间相互作用的模型,很好地解释了有机薄膜晶体管不稳定性的发生机制。根据这个模型,研究人员可能利用在有机薄膜晶体管的表面加合适的保护层等手段克服当前有机薄膜晶体管的不稳定性。

因此从某种意义上说,由于其与各种“物”良好的集成性和结合性,可以形成诸如智能包装、可穿戴的健康护理产品等,柔性电子技术成为促成物联网真正普及和大规模应用的“最核心”技术。大面积柔性有机薄膜晶体管(OTFT)和相关集成电路开始受到科研人员的青睐。

题图来源:图虫创意

加快“后摩尔时代”的到来

暴露在空气中的有机薄膜晶体管会与空气中的水和氧气发生接触。在正向电压作用下,水分子和氧分子发生电化学反应,在器件表面形成带负电荷的氢氧根离子(OH﹣),这使得器件中带正电荷的载流子(器件中可自由移动的、带有电荷的物质微粒)被氢氧根离子束缚,导致器件无法正常工作。

与传统电子器件相比,柔性电子技术拥有众多优点:(1)器件可弯曲与伸展,由此可诞生众多新型应用领域;(2)可以在柔性和大面积衬底上采用大规模印刷技术加工实现,生产成本低廉;(3)加工设备简单,前期投入成本低;(4)加工过程属于低温工艺,工艺简单,不会对环境造成污染。

排版:小石头

2013年,科研团队在原有的工作基础上,通过进一步研究、论证,最终找到导致OTFT性能发生变化的内在机理,提出水氧电化学反应与有机薄膜载流子相互作用模型(见图1)。

此前国际上对导致有机薄膜晶体管不稳定性的原因众说纷纭,而复旦大学的研究者提出了一个相对具有普适性机制模型:

未来,随着有机薄膜晶体管(OTFT)运行速度的不断加快,透明可弯曲的手机、透明可收卷的电视,乃至可显示新闻股市和天气的车窗都可以成为现实。

style="font-size: 16px;">复旦大学的研究者揭示了导致有机薄膜晶体管性能变化的机制,为进一步改良以有机薄膜晶体管为代表的柔性电子技术开拓了前景,从可穿戴设备到纸币防伪,柔性电子技术将有望走进我们生活。

应用前景广阔

大家可以穿着智能可穿戴设备进行锻炼。

在这种新的形势下,信息科技在后摩尔时代必须有新的基础性突破和发展。与此同时,人类社会将全面进入信息网络社会和知识文明时代,信息网络将成为人类最重要的基础设施和公共资源,成为国家、社会法人和个人重要的生存发展平台。信息科技也将步入信息网络、物理世界和人类社会三者动态交互、全面融合的物联网时代。

有机薄膜晶体管不稳定性机制模型。

作为推动“物联网”最核心硬件技术的柔性和可穿戴电子领域,世界上还没有任何一个国家和地区拥有绝对的技术优势,而且其生产设备的投资远远低于传统硅芯片生产所需的几十甚至上百亿美元的投入。只要我国加大重视和增加研发投入,一定会在材料、器件以及系统集成方面取得突破,并充分发挥柔性大面积电子在物联网应用中的柔性、超薄、低成本、环保等优势,使其成为一个高技术、引领性的产业。

【拓展阅读】我用人工智能写rap和诗,但我想成为一个黄渤那样的演员返回搜狐,查看更多

由于理论上单个有机分子就可构成一个功能器件,因而OTFT还有可能实现超高密度和超大容量存储。低成本、易加工、组成结构多变、可折叠、小体积、快响应、低功耗和高存储密度等优点使得OTFT在未来信息存储和逻辑电路方面有着非常广阔的应用前景。

图片 1

在施加反向电压后,氢氧根离子(OH﹣)发生逆向电化学反应,水分子(H2O)和氧分子(O2)重新被释放出来,之前被牢牢“锁住”的“空穴”便能在器件中自由“流动”。

谈及有机薄膜晶体管在未来的应用,刘冉表示:“有机薄膜晶体管并不能取代硅的集成电路,但能够实现一些新的应用。”以有机薄膜晶体管为代表的柔性电子技术具有器件可伸展弯曲、加工设备相对简单、成本低廉等优点,在大面积的柔性显示设备及低成本的智能电子标签等领域具有广阔的应用前景。

在大气环境下,空气中大量存在的水分子(H2O)和氧气分子(O2)会与OTFT发生直接接触。在正向电压作用下,水分子(H2O)和氧气分子(O2)开始“手拉手”发生电化学反应,器件表面迅速产生大量带负电荷的氢氧根离子(OH﹣)。与此同时,由于正负电荷相互吸引,使得有机半导体材料中带正电荷的“空穴”载流子被OH﹣牢牢“锁住”,缺少“空穴”的OTFT无法导通,也便无法正常工作。

从可穿戴设备到纸币防伪,柔性电子技术将有望走进我们生活的方方面面。

传感器是实现物联网不可缺少的基本组成部分之一。要将世界的万事万物联系在一起,必须通过功能各异的传感器感知并传递周围环境信息,而物联网技术的发展和成熟也对传感器提出了新的要求。低成本,低功耗,可印刷的柔性薄膜传感器的市场需求将在未来十年中急剧增加。

原标题:从可穿戴设备到纸币防伪,这种技术将走进我们生活的方方面面

实验结果表明,该模型为统一理论模型,不但可以解释低导电特性的OTFT器件,还可以解释类似碳纳米管和石墨烯之类具有高导电特性的薄膜器件,为将来OTFT的大规模应用提供了理论指导和依据。

本文由威尼斯网址开户网站发布于威尼斯网址开户网站,转载请注明出处:南开大学在发表有机薄膜晶体管稳固性机理方面

上一篇:威尼斯网址开户网站:小米突然确定发布会,小 下一篇:没有了
猜你喜欢
热门排行
精彩图文